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Abstract
The continual demand for modern optoelectronics with a high integration degree and
customized functions has increased requirements for nanofabrication methods with high
resolution, freeform, and mask-free. Meniscus-on-demand three-dimensional (3D) printing is a
high-resolution additive manufacturing technique that exploits the ink meniscus formed on a
printer nozzle and is suitable for the fabrication of micro/nanoscale 3D architectures. This
method can be used for solution-processed 3D patterning of materials at a resolution of up to
100 nm, which provides an excellent platform for fundamental scientific studies and various
practical applications. This review presents recent advances in meniscus-on-demand 3D
printing, together with historical perspectives and theoretical background on meniscus
formation and stability. Moreover, this review highlights the capabilities of
meniscus-on-demand 3D printing in terms of printable materials and potential areas of
application, such as electronics and photonics.
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1. Introduction

Three-dimensional (3D) printing is a form of additive man-
ufacturing and one of the most disruptive technologies to
emerge in recent years. It has attracted increasing atten-
tion owing to its possible applications in the manufactur-
ing industry, which could lead to benefits for economies and
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people’s daily lives [1]. In particular, 3D printing could be used
to unify the traditional manufacturing processes of molding,
carving, welding, and assembly, and thereby underpin simple,
versatile, and sustainable manufacturing routes [2]. The poten-
tial economic impact of 3D printing onmanufacturing industry
is huge [3], with an expected growth of US$200 billion per
year by 2025 [4]. However, the utilization of conventional 3D
printing methods, such as stereolithography and fused depos-
ition modeling, has long been restricted to prototyping rather
than direct manufacturing, owing to the technological chal-
lenges associated with material and precision [5–9]. Over the
past two decades, substantial research progress has been made
in meeting these challenges. First, the invention of two-photon
lithography has resulted in a breakthrough in the precision
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of 3D printing. This technique exploits the nonlinear depend-
ency of polymerization rate on the intensity of irradiating light
to produce 3D structures with feature sizes beyond the dif-
fraction limit [10–12], which is a key step toward nanoscale
3D printing. Second, the utilization of viscoelastic colloidal
inks for nozzle-based extrusion 3D printing has contributed to
the diversification of 3D printable materials to include poly-
mers, metals, and ceramics [13, 14]. Nevertheless, it remains
a technological challenge to obtain both nanoscale-precision
and material diversity.

A liquid meniscus formed between a sharp tip and a
substrate can drive effective material transport/assembly at
the nanoscale. Dip-pen nanolithography involves the use
of a nanosized ink meniscus [15] formed on an atomic-
force microscope tip to draw two-dimensional (2D) nano-
patterns on a planar substrate under the effect of solvent
evaporation [16]. Moreover, recent studies have demonstrated
that a fluid-like ink meniscus formed on a nanopipette can be
used for 3D printing, during which the nanopipette continu-
ously supplies ink. This process is referred to as meniscus-
guided 3D printing. Crucially, the mechanical flexibility of
the meniscus allows the spatial resolution to be controlled at
∼100 nm without nozzle clogging, which has been a long-
standing problem that has limited the application of nozzle-
based 3D printing. Subsequent rapid solidification via solvent
evaporation enables the retention of printed 3D nanostruc-
tures. This meniscus-guided method is also compatible with
diverse materials, including polymers [17], metals [18], car-
bon nanomaterials [19], perovskites [20], and metal–organic
frameworks (MOFs) [21]. These technological advancements
in terms of precision and materials offer new avenues for
the direct manufacture of electronics and photonics via 3D
printing.

This review presents recent advances in research on
meniscus-guided 3D printing technologies for manufacturing
freeform electronic and photonic devices. First, we briefly dis-
cuss the formation and utilization of a femtoliter ink menis-
cus for micro/nanoscale 3D printing. Then, we describe the
various materials printable via the meniscus-guided method,
including metals, polymers, carbon nanomaterials, MOFs,
peptides, and perovskites, and their applications in electronic
and photonic devices. Finally, we outline the challenges and
prospects for the development of meniscus-guided 3D print-
ing technology for use in integrated circuit manufacturing.

2. Theoretical background

2.1. Meniscus formation

The meniscus-guided 3D printing process employs a
femtoliter-volume Newtonian ink meniscus to write freeform
3D micro/nanostructures under rapid evaporation of solvent.
The first step is the production of an ink meniscus between
a nanopipette tip and a substrate. The success of the printing
process relies on understanding the dynamics of meniscus
formation. As such, three methods have been devised for the

formation of an ink meniscus: physical contact, electrohydro-
dynamic (EHD) dispensing, and pressure-induced dispensing.

Figure 1(a) depicts the physical contactmethod ofmeniscus
formation. First, an ink-filled nanopipette touches a substrate
surface, resulting in a femtoliter-volume of ink being dis-
pensed via wetting to form a meniscus at the nanopipette–
substrate gap. Then, the solvent rapidly evaporates on the
meniscus surface, accelerating the solidification. Subsequent
upward movement of the nanopipette results in meniscus
formation and solidification on the previous solidified struc-
ture front. Thus, when the meniscus is stable between the nan-
opipette tip and the top of the as-printed structure during nan-
opipette movement, continuous nanoscale printing is realized
[17, 22–25]. This physical contact method is a minimalist way
of producing an ink meniscus, as it requires no external fields
or additional steps. However, the reliability of this method is
limited, owing to inconsistent nanopipette–substrate contact
behavior and nanopipette tip breakage due to repeated con-
tact. Solving these problems is crucial for establishing a high-
throughput, scalable printing process.

The development of non-contact procedures can consid-
erably improve the reliability of meniscus formation. For
example, Chen et al reported an EHD method for form-
ing a femtoliter ink meniscus; crucially, this method does
not involve nanopipette–substrate contact and positional feed-
back, and is applicable to nanoscale, parallel 3D printing [26].
As illustrated in figure 1(b), the method begins with place-
ment of an ink-filled nanopipette a few micrometers away
from a substrate. Subsequently, a voltage with a programmed
pulse is applied to the substrate to generate electric charges
on its surface, which results in the formation of an electro-
static attractive force between the charged substrate and the
ink surface at the nanopipette tip. The electrostatic force ulti-
mately overcomes the surface tension of the ink, resulting
in dispensing of the ink and the formation of a femtoliter
ink meniscus at the nanopipette–substrate gap. The menis-
cus can be used to draw freeform 3D nanostructures under
the effect of solvent evaporation. The reliability of this non-
contact, feedback-free, electrostatic method enables its use in
nanoscale parallel manufacturing.

Additionally, an ink meniscus can be easily produced if a
pendant ink droplet is formed at a nanopipette tip under pneu-
matic pressure, particularly when highly viscous inks such as
polymer or liquid metal inks are used [27–29]. This is because
a pendant ink droplet enables the formation of an ink menis-
cus with only moderate-pressure contact (rather than extens-
ive physical contact) between a nanopipette and a substrate,
which also helps to maintain stable meniscus formation during
the printing process. Moreover, the application of backpres-
sure instantly terminates the printing process. This pressure-
assisted approach produces a larger meniscus volume than the
other two methods do, widening the printing width.

2.2. Meniscus stability

The mechanical flexibility of a meniscus allows for printing
structures finer than a nanopipette aperture by the application
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Figure 1. Meniscus-formation and thermodynamic stability. Schematic showing three meniscus-formation mechanisms: (a) physical
contact; (b) electrohydrodynamic (EHD) dispensing; and (c) pressure-induced dispensing. (d) Meniscus Thermodynamic stability window
of an electrolyte meniscus for stable 3D electrodeposition. From [30]. Reprinted with permission from AAAS. (e) Plot of nanowire diameter
versus drawing speed during the meniscus guided process. [22] John Wiley & Sons.

of stretching. One study achieved ∼100 nm spatial resolution
using a femtoliter ink meniscus formed on a 1–2 µm-
diameter nanopipette by increasing the nanopipette with-
drawal (pulling) speed [20]. Such resolution has not been
obtained via other nozzle-based 3D printing techniques. It is
critical to maintain the thermodynamic stability of the menis-
cus formed between a nanopipette and the growth front of a
printed structure during continuous nanopipette withdrawal.
The thermodynamic stability is determined by the thermo-
dynamic properties of the ink and the involved interfaces.
As depicted in figure 1(d), with the thermodynamic consid-
eration, the interfacial forces at the three-phase contact line
between the meniscus and the growth front should satisfy the
Neumann quadrilateral relation with an equilibrium angle, φ0,
between the growth direction and the meniscus surface as
follows [30]:

φ 0 = arccos

(
γ2
L + γ2

S − γ2
SL

2γLγS

)
where γL and γS are the surface energies of the ink and the
grown solid, and γSL is the interfacial energy of the ink–solid
interface. Within the stable meniscus region, the deviation of
φ allows for control of the diameter of the grown structure
through adjustment of the nanopipette withdrawal speed [31].

Furthermore, to continue the printing process, the radius (r)–
drawing speed (v; same as nanopipette withdrawal speed) rela-
tionship should satisfy the following material balance law:

ṁ= ρπr2v

where ṁ is the mass rate of solute precipitation, and ρ is
the density of the grown solid structure. An inverse square
root dependence of diameter on drawing speed was observed
in a previous study (figure 1(e)) [22]. It is also critical that
the solute precipitation rate can be influenced by the solvent
evaporation [17, 20, 32]. A critical drawing speed exists; at
speeds below this critical drawing speed, continuous, uni-
formed printing is realized, whereas at speeds above this crit-
ical drawing speed, a meniscus is unstable and prone to break
off from a nanopipette, resulting in discontinuous growth.

3. Printing materials and applications

3.1. Metals

Metals are essential elements for integrating electronic and
photonic circuits, owing to their outstanding electrical, optical,
and mechanical properties [33–35]. For example, highly con-
ductive metallic interconnects can serve as paths in a circuit to

3



Int. J. Extrem. Manuf. 5 (2023) 032009 Topical Review

Figure 2. Electrodeposition-based meniscus-confined 3D printing of metallic nanostructures. (a) Schematic of setup for meniscus-confined
electrodeposition 3D printing. (b) Scanning electron microscopy (SEM) images (tilted) showing an array of four Cu nanowires with
diameters of 200–250 nm and a length of 10 µm, and an SEM isometric view of a Cu nanowire. Reprinted from [42], with the permission of
AIP Publishing. (c) Electrodeposited Cu wires with different inclination angles fabricated using a side-cut micropipette. From [30].
Reprinted with permission from AAAS. (d) A Cu microhelix array. Reproduced from [46] with permission from the Royal Society of
Chemistry. (e) Hollow tube structures. (f) Mesh structures. [23] John Wiley & Sons. (g) A Cu/Co microwire array with a diameter gradient.
[47] John Wiley & Sons. (h) An SEM image of a vertical Cu microwire composed of 20 Cu voxels with a diameter of 1 µm. Reprinted from
[48], Copyright 2022, with permission from Elsevier. (i) SEM images of tilted pillars with a lateral shift printed via voxel stacking, as
illustrated in the inset. Reprinted with permission from [18]. Copyright 2021 American Chemical Society. (j) SEM images showing 20
electrodeposited interconnects with submicrometer diameters extending from a 50 µm × 50 µm central pad (scale bar: 10 µm). (k) SEM
images showing overlap interconnects spanning 5 µm-high steps (scale bar: 10 µm). From [30]. Reprinted with permission from AAAS.
(l)–(n) A lit LED lamp with single Cu structures as electrical interconnects. [23] John Wiley & Sons. Reprinted with permission from [50].
Copyright 2018 American Chemical Society.

transmit signals and data among electronic devices [36–39]. In
addition, nanoscale metallic materials, such as nanoparticles,
can be used to manipulate electromagnetic fields at the sub-
wavelength scale to produce nanophotonic device components
[40, 41]. However, there is a need for a manufacturing method
that enables the 3D integration of metallic components of
chips, as this will increase their integration density and design
flexibility. Recently, the meniscus-guided 3D printing method
has been used to fabricate freeform metallic micro- and nano-
structures with the aid of two material-growth pathways: (1)
electrochemical deposition, and (2) nanoparticle assembly and
annealing. First, we review recent advances in the meniscus-
confined electrochemical deposition-based 3D printing of
metallic structures and the electronic and photonic applica-
tions of these structures.

Figure 2(a) depicts the meniscus-confined electrodepos-
ition process [42]. The printing apparatus comprises a glass
nanopipette filled with an electrolyte, a metal wire (anode),
and a conductive substrate (cathode) on which the metal is
deposited. An electric potential is applied across themetal wire

and the substrate, resulting in the electrodeposition process in
an electrolyte ink meniscus formed between the nanopipette
and the substrate. The deposition is guided vertically when the
nanopipette is withdrawn from the substrate. Synchronization
of the withdrawal speed of the nanopipette and the vertical
growth of metal maintains the thermodynamic stability of the
meniscus, resulting in continuous growth of a freestanding
metallic structure [28, 43–45] (figure 2(b)).

Some innovative strategies have been devised to achieve
high resolution, omnidirectionality, and continuous printing.
Hu et al devised a side-cut micropipette as a nozzle to facilit-
ate both vertical and lateral printing. The geometry of the side-
cut micropipette provides a stable and controllable meniscus
during the omnidirectional printing process (figure 2(c)). In
2017, Yi et al demonstrated the 3D printing of intricate and
high-degree-of-freedom metal microhelices with high elec-
trical conductivity using a high-resolution monitoring system
(figure 2(d)) [46]. Seol et al developed a voltage modulation-
based method to control the formation of solid and hollow
internal structures, respectively, during meniscus-confined 3D
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Figure 3. Meniscus-confined 3D printing of metallic nanoparticles. (a) Schematic of 3D printing of freestanding metallic nanostructures.
Reprinted with permission from [53]. Copyright 2022 American Chemical Society. (b) Electrical resistivity of Ag electrodes (inset:
field-emission scanning electron microscopy image) of various concentrations during thermal treatment. Reprinted with permission from
[51]. Copyright 2017 American Chemical Society. (c) Resistance of printed PaLMP under strain. (d) Resistance of PaLMP under repeated
application of 100% strain over 10 000 cycles. Reproduced from [29]. CC BY 4.0. (e) Photoluminescence (PL) spectral shifts of three
quantum dots near-field-coupled to an AuNP cluster. (f) Dark-field scattering top-view images of pillar arrays containing various types of
M13 bacteriophages. Reprinted with permission from [53]. Copyright 2022 American Chemical Society.

electrodeposition (figures 2(e) and (f)) [23]. Nie et al demon-
strated the direct writing of shape-gradient magnetic alloy
microwires through dynamic adjustment of pull-away speed in
meniscus-confined electrodeposition (figure 2(g)) [47]. Other
researchers have also developed voxelated meniscus-confined
electrodeposition methods to produce freeform 3D metallic
nanostructures [18, 48].

Metallic structures formed by the above-described meth-
ods have been utilized as interconnects in electronic circuits
[40, 49]. Figures 2(j) and (k) show high-density, high-quality
metallic interconnects extending from pads [29]. Figures 2(l)–
(n) demonstrate the function of electrical interconnects dir-
ectly printed onto light-emitting diode (LED) circuits [23, 50].

Meniscus-guided 3D printing can also be realized through
the use of metallic nanoparticles-suspended solution as print-
ing inks. Specifically, the liquid meniscus formed at a
nanopipette–substrate gap can confine and guide the self-
assembly of nanoparticles in three dimensions under the effect
of solvent evaporation, thereby producing freestanding metal-
lic microstructures (figure 3(a)). Subjecting a thus-printed
metal structure to mild thermal or chemical annealing can
endow it with sufficiently high electrical conductivity to be
used for fabricating interconnects for flexible and wearable
electronic circuitries. Lee et al used Newtonian polymer-
capped silver nanoparticle inks for high-resolution 3D print-
ing of microelectrodes with a diameter of ∼5 µm and an
electrical conductivity of over 104 S cm−1, and subjec-
ted printed structures to post-thermal annealing (figure 3(b))
[51]. In 2022, Lee et al reported a one-step technique that
employs a semi-solid polyelectrolyte-attached liquid-metal

microgranular particle-based ink for printing highly conduct-
ive and stretchable microelectrodes [29], without the need for
post-processing. The printed liquid-metal interconnect exhib-
ited only a small change in electrical resistance under extreme
stretching (500%; figure 3(c)) and no electrical failure under
repeated strain (10 000 cycles; figure 3(d)). These properties
will enable the practical application of such printed intercon-
nects in soft electronics.

The meniscus-guided 3D printing method can also be
used to create freeform plasmonic nanoparticle clusters with
desired shapes and compositions. Kim et al demonstrated
that the 3D geometry of printed quantum dot-embedded plas-
monic clusters allowed for radiation pattern manipulation
(figure 3(e)), and the plasmonic clusters exhibited enhanced
sensitivity for virus detection (figure 3(f)) [52, 53]. Thus, such
printed plasmonic structures could be used as high-sensitivity,
cost-effective pathogen diagnosis platforms, which are in high
demand for pandemic management.

3.2. Polymers

Polymer-based 3D printing inks are gaining increasing atten-
tion, owing to their excellent electrical and optical proper-
ties and ease of processing. Functional polymers have been
utilized in various applications, such as soft electronics [54],
biomedical engineering [55], energy storage [56], and smart
sensors [57, 58]. Recently, several studies have reported
the precise and rapid meniscus-guided printing of polymeric
materials, including polypyrrole (PPy) [17, 24, 59], poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)
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Figure 4. Meniscus-guided 3D printing of polymer composite for electrical and photonic applications. (a) Field emission scanning electron
microscopy (FE-SEM) images of a series of 3D PEDOT:PSS microstructures. (b) Microscopic image of two LEDs under a 4.5 V bias and
stretched by 0%–265%. Reprinted with permission from [60]. Copyright 2012 American Chemical Society. (c) Microscopic image of
chip-to-chip connected optical wires. (d) Simulated and measured insertion losses of a directly bonded wire between grating couplers.
Reprinted with permission from [68]
© 2022 The Optical Society. (e) Printed 3D pillar (height = 80 ± 2 µm; diameter = 14 ± 1 µm) electrodes. (f) In situ immunophenotyping
of 3D MEA-based cell-laden constructs on day 7 of human NSC differentiation without ES. The image was taken at the interface of the
ventral surface of the construct and the Matrigel-coated insulating layer covering the Au electrodes and shows low-density human
NSC-derived neurons (TUBB3+), related neurite formation, glial (GFAP+) cells, and underlying patterned Au electrodes as dark
bands/silhouettes. (g) In situ immunophenotyping of 3D MEA-based cell-laden constructs on day 7 of human NSC differentiation including
3-day ES. [69] John Wiley & Sons.

[60, 61], polyaniline (PANI) [62], polystyrene (PS) [63],
chitosan hydrogel [64], and block copolymers [65]. The
meniscus-guided method can pattern these polymers into
micro/nanoscale structures with variousmorphologies, such as
pillar arrays, arches, tubes, meshes, and walls, paving the way
for new applications in electronics, mechanics, and photonics.

Polymer growth in themeniscus-guiding process occurs via
(i) polymerization and (ii) evaporation-driven solidification.
To polymerize a monomer ink meniscus during the guiding
process, studies have employed oxygen in air as an oxidant
[17] or applied an external electric potential [62]. The polymer
solution meniscus can also be solidified via the rapid evap-
oration of solvent during the guiding process, to produce 3D
micro- and nanostructures [60, 66, 67].

Meniscus-guided 3D printing technology allows for
the rapid prototyping of stretchable conjugated polymer
nanowires for electrode connection and light propagation.
Kim et al demonstrated the 3D printing of high-aspect-ratio
PEDOT:PSS nanoarch interconnects via evaporation-driven
solidification (figure 4(a)) [60]. The connected working LED
devices maintained their performance under extreme stretch-
ing conditions of up to 270% (figure 4(b)). Pyo et al repor-
ted similar stretchable connections for light propagation in
straight, curved, and branched 3D-printed polymer nanowires
[63, 66]. Figure 4(c) presents the printed optical bonding
between grating couplers and between a grating coupler and a

single-mode fiber. The researchers determined the geometric
parameters of the wire via preliminary experimentation and
simulation. The connections showed a relatively low inser-
tion loss (5.8 dB) at a wavelength of 1590 nm and a larger
wavelength tolerance than conventional connections [68]. As
conducting polymers are biocompatible, printed freestanding
arrays can be used for connections between organisms and
electronic devices. Tomaskovic-Crook et al electrically stim-
ulated maturing neural tissues from human neural stem cells
with a printed PEDOT:PSS electrode and achieved functional
neural tissue induction in a relatively short time (figure 4(e))
[69].

Numerous studies have focused on the printing of func-
tional polymers. Because a meniscus can be as small as
a few micrometers or even a few hundred nanometers,
printed stimulus-responsive polymers can serve as micro/n-
anoscale sensors or actuators. Kim et al developed a high-
resolution (250 nm) on-demand moisture sensor by exploit-
ing the interferometric response of a 3D-printed PS nanoprobe
(figure 5(a)) [70, 71]. Won et al used the meniscus-guided 3D
printing method to form a stretchable poly(methyl methac-
rylate)/PPy gas sensor for NH3 (figure 5(b)) [72].

The meniscus-guided 3D printing method can provide an
effective route for manufacturing polymeric micro-actuators
with programmable shapes and functions. Lee et al fabric-
ated a light-driven supramolecular nanogripper (figure 5(c))
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Figure 5. Meniscus-on-demand 3D printing of functional polymers. (a) Quantitative measurement of interferometric response of a
nanoprobe to RH. Interference patterns at 30%–90% RH and the schematic illustration of a nanoprobe interferometer consisting of an
RH-responsive polymer nanowire and a tapered optical fiber. Reprinted with permission from [70]. Copyright 2021 American Chemical
Society. (b) Microarches of poly(methyl methacrylate)/PPy composite microtubes show robust sensitivities under different stretching
conditions and no changes when exposed to 1 ppm NH3; inset: FE-SEM images of the microarch arrays. Reprinted from [72], Copyright
2017, with permission from Elsevier. (c) Azo-1 and a PS nanowire (500 nm [diameter] × 12.5 µm [length]) arms individually integrated
onto the tip of a glass microcapillary tube. The optical microscope images show that the resulting tweezers successfully gripped a PS
microparticle (d ∼ 4 µm) on a Si substrate upon UV irradiation (1.5 mW cm−2 for 20 s): 1 (contact)→ 2 (gripping) → 3 (detachment);
scale bar: 20 µm. Reproduced from [73] with permission from the Royal Society of Chemistry. (d) Schematic and optical micrograph of a
four-segment PS/PEDOT:PSS bilayer with a straight shape at 20% and 50% RH. Reprinted with permission from [74]. Copyright 2021
American Chemical Society. (e) 3D-printed blue nanopixel series with controlled heights of 2, 4, 6, 8, and 10 µm. Each row contains a
side-view optical bright-field (BF) image, a bottom-view optical BF image, and a bottom-view PL image. (f) Intensities and spot sizes of PL
emissions of red nanopixels measured from a bottom-view PL image. Reprinted with permission from [76]. Copyright 2020 American
Chemical Society. (g) Photograph of a nanowire photodetector (NWPD) array and a series of optical microscopy images showing degrees of
stretching of up to 100%. [78] John Wiley & Sons.

that could grip and release a 4 µm-diameter PS microparticle
under ultraviolet (UV) stimulation [73]. Actuators with asym-
metric structures (such as layered structures) can also be prin-
ted via meniscus guiding. Huan et al used a double-barrelled
theta pipette as a nozzle for one-step 3D printing of pro-
grammable bilayer microscale structures (figure 5(d)). The
bilayer was composed of PEDOT:PSS (the active layer) and PS
(the passive layer) and was actuated by humidity and infrared
light [74]. Similarly, Zhang et al fabricated a multilayer struc-
ture via meniscus-guided printing combined with localized
electropolymerization [75] and thereby generated a micro-
scale tweezer based on the opposite actuation behaviors of
PPy:CF3SO3 and PEDOT:PSS under the same potential. Such
meniscus-guided printed actuators respond to various stimuli
(e.g. light, electric potential, humidity, and temperature) and
so can be used to manipulate objects at the micro/nanoscale.

The addition of light-emitting agents, such as quantum
dots, into optically transparent polymers can enable the dir-
ect printing of various optical functional devices. Bae et al
3D printed high-integration-density, high-brightness quantum
dot–polystyrene color pixels with a lateral distance of only
620 nm and a pitch of 3 µm for red, green, and blue [76].
The light intensity of each 3D pixel could be controlled by

the vertical pixel height, so that the pixels were brighter
than 2D pixels (figures 5(e) and (f)). Furthermore, the
nanoscale 3D pixels could be directly fabricated on rough
substrates via meniscus-guided printing—even on the sur-
face of photocopying paper [77]. Yoo et al printed oleic
acid-capped PbS quantum dots, which were incorporated
into poly(3-hexylthiopehene), and used these to develop
high-performance, flexible, and stretchable UV–vis–near-
infrared nanowire photodetectors (figure 5(g)). These could be
stretched by asmuch as 100% and could be repeatedly used for
up to 100 cycles [78].

3.3. Carbon nanomaterials

In recent years, carbon nanomaterials have been favored by
researchers, due to their unique chemistry, electronic, optical,
thermal, and mechanical properties [79–81]. Here, we review
research progress on the meniscus-guided 3D printing of car-
bon nanomaterials and their potential applications.

Graphene is a 2D carbon nanomaterial comprising sp2-
hybridized single-atom-thick carbon sheets [82, 83]. It is
characterized by a low density, a high specific surface area,
excellent mechanical properties, high conductivity, and stable
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Figure 6. Meniscus-guided 3D printing of carbon nanomaterials for electrical applications. (a) Schematic of meniscus-on-demand 3D
micro- and nanoprinting of GO nanowires. The left image is the pure GO ink printing process, and the right image is the GO-PVP
composite-ink printing process. [32] John Wiley & Sons. Reprinted from [89], Copyright 2017, with permission from Elsevier. (b) FE-SEM
images of 3D-printed rGO nanostructures: straight wires, a bridge, suspended connections, and braided structures. (Scale bar: 1 µm). [32]
John Wiley & Sons. (c) Optical image of an rGO nanoarch between Au electrodes that functions as an electrical interconnect (top).
Schematic of an rGO field-effect transistor with a Si/SiO2 substrate functioning as a gate dielectric and a back gate (bottom). [32] John
Wiley & Sons. Reprinted from [89], Copyright 2017, with permission from Elsevier. (d) Histogram comparing the viscosities of the GO inks
with 2 wt% GO and different PVP concentrations. The inset are optical images of the gel–sol transition of the inks with pure GO (left) and
GO-20 wt% PVP (right). (e) and (f) Viscosity and storage and loss moduli as a function of shear rate and shear stress for pure GO and
GO-PVP. Reprinted from [89], Copyright 2017, with permission from Elsevier. (g) Schematic of meniscus-on-demand 3D micro- and
nanoprinting of an MWCNT/PVP microarchitecture. (h) FE-SEM images of MWCNT 3D-printed nanostructures: a pillar array, a
freestanding bridge, a single wall, and a zigzag structure composed of 2D lines and 3D bridges on a curved substrate. Reprinted with
permission from [92]. Copyright 2016 American Chemical Society. (i) Manufacturing of an MWCNT/PVP flexible strain sensor via
meniscus-guided printing; the response of electrical resistance,△R/R0 to θf (bending degree of the forefinger) was stable. Reprinted with
permission from [93]. Copyright 2018 American Chemical Society.

chemical properties [84]. Graphene oxide (GO) is an import-
ant product of graphene [85]. Owing to the outstanding prop-
erties of GO, numerous studies have attempted to create 3D
GO-based micro- and nanostructures [19, 86, 87]. GO is
often converted to reduced graphene oxide (rGO) via chem-
ical or thermal reduction, as rGO exhibits good electrical
conductivity [88].

Kim et al were the first to report the meniscus-guided 3D
printing of GO nanowires. At room temperature, a GO flake-
dispersed aqueous ink meniscus was formed on a substrate

via nanopipette–substrate contact. As the nanopipette was
pulled up, the solvent evaporated rapidly, and the deposited
solid matter gradually grew into a freestanding GO nanowire
(figure 6(a)). The GO wire was then reduced to rGO via heat
treatment or chemical treatment (using hydrazine). Several
rGO nanostructures, including straight wires, bridges, suspen-
ded connections, and braided structures, were printed via this
method (figure 6(b)). Moreover, the printed rGO structures
could be successfully applied as electric interconnects and gas-
sensing transducers (figure 6(c)) [32].
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To improve the feasibility of printing multiple patterns,
Chang et al optimized the rheological properties and concen-
tration of a GO ink for a meniscus-guided printing process by
adding polyvinylpyrrolidone (PVP) as a gelation inhibitor and
rheology modifier. The interplanar distance between the GO
sheets are increased by introducing excess PVP, thereby pre-
venting the hydrogen-bonded-stacking of the GO sheets and
causing slippage between the adjacent GO sheets, inducing
the gel–sol transition of the inks. A histogram in figure 6(d)
comparing the viscosities of the GO inks with 2 wt% GO and
different PVP concentrations (0, 2, 20 wt%) clearly indicates
the gel–sol transition upon the addition of 20 wt% PVP. In
figures 6(e) and (f), the viscosity andmodulus values as a func-
tion of the shear rate and shear stress for pure GO andGO-PVP
inks are shown, which further confirms the gel–sol transition
of the ink and its fluid-like behavior enabled by sufficient PVP
content. Thus, the rheological property of the ink is effectively
modified, and it can flow through a micronozzle without any
applied pressure, enabling smooth and high-resolution print-
ing of highly concentrated graphene patterns. And the ink was
used to fabricate an rGO field-effect transistor (figure 6(c))
[89].

Carbon nanotubes are another attractive carbon
nanomaterial [90, 91]. Kim et al reported the fabrication of
highly conductive multi-walled carbon nanotube (MWCNT)
microstructures via the meniscus-guided 3D printing method
(figure 6(g)). AnMWCNT suspensionwasmixedwith 17wt%
PVP to obtain an ink with printing-compatible rheological
properties. Using the developed method, a pillar array, a
freestanding bridge, walls of various shapes, and a zigzag
structure of MWCNTs were fabricated (figure 6(h)). The
printed MWCNT structures demonstrated practical applic-
ability as gas sensor transducers, point emitters, and radio-
frequency inductors [92]. Furthermore, Wajahat et al fabric-
ated an MWCNT/PVP flexible strain sensor via meniscus-
guided printing (figure 6(i)) [93].

3.4. MOF

The Cambridge Structural Database currently contains 75 600
MOF structures [94]. MOFs are usually synthesized as
powders, so they need to be shaped and densified into
monoliths that can be easily handled and used in practical
applications [95]. To achieve this, classical processes such
as pelletization and extrusion involving mechanical forces or
additives have been widely used [96–100]. However, these
processes suffer from two longstanding challenges. First,
shaping a monolith requires multiple, complex, and expensive
machining processes. Second, the application of mechanical
forces and additives significantly deteriorates the functional
properties of MOFs, such as their porosity and surface area.
For example, the application of mechanical forces can res-
ult in a loss of MOF crystallinity, and the addition of addit-
ives can result in insufficient MOF loading and block MOF
pores [101]. Consequently, the porosity and surface area of

MOF monoliths may be much lower than those of the corres-
ponding crystalline MOF powders, and such MOF monoliths
exhibit poor gas-uptake performance. Recently, 3D printing
has emerged as an alternative shaping strategy for produ-
cing MOF monoliths [102–107], due to its cost-effectiveness
and design flexibility in production. However, conventional
3D printing approaches also require the use of additives for
shape retention, and the consequent pore blockage signific-
antly deteriorates gas-uptake capability. In 2019, an innovative
3D printing strategywas reported that usedMOF colloidal gels
as inks without the need for additives, but the resulting struc-
tures’ gas-adsorption properties, specifically their Brunauer–
Emmett–Teller surface area, was lower than expected owing
to insufficient crystallization [108, 109]. In 2022, Liu et al
reported direct incorporation of evaporation-driven MOF nuc-
leation and growth into a meniscus-guided process to produce
a pure, freeform MOF micro-monolith (figure 7(a)), without
the need for additives or mechanical forces. Figure 7(b) shows
a pure HKUST-1 MOF microwall printed via a layer-by-layer
meniscus-guided process. This printed monolith functioned as
a micron-sized capacitive sensor of humidity (figures 7(c) and
(d)) [21].

3.5. Peptides

Peptides have attracted significant interest owing to their
programmable electrical, optical, and molecular recognition
properties and biocompatibility [110]. Moreover, the self-
assembling capacity of peptides, which is driven by weak
non-covalent interactions, enables the spontaneous formation
of micro- and nanostructures of various shapes, including
spherical, rodlike, and tubular shapes, with superior crys-
tallinity at the molecular level. However, the position and
orientation of these micro/nano-assemblages is not control-
lable, limiting their practical application. Recently, 3D print-
ing has been utilized to improve shaping during the fabrication
of peptide-based materials through direct ink writing [111],
inkjet printing [112], stereolithography [113], and digital light
processing [114].

Yang et al developed a meniscus-guided 3D printing
method for generating dipeptides with controlled shapes and
crystallinity [115]. This method consists of two steps: (i)
meniscus-guided layer-by-layer solidification of dipeptides
(figure 7(e)), and (ii) post-thermal annealing to achieve
molecular crystallization. Various self-assembled 3D peptide
structures were printed, including a two-step microwall, a tri-
angular prism, and a zigzag wall (figure 7(f)). An annealed
printed structure showed a vertical piezo-response property
(figure 7(g)) and thus potential applications in electronics.

In another study, dipeptide crystallization was modu-
lated in situ during a meniscus-guided 3D printing process
(figure 7(h)) [116]. Specifically, the self-assembly-based crys-
tallization of dipeptides was switched on and off by altering
the RH during the printing process to control the evapora-
tion of the binary solvent. This method allowed control of the
transition of diphenylalanine (FF) from its crystalline form to
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Figure 7. Meniscus on-demand 3D printing of MOFs and peptides. (a) Schematic of meniscus-guided 3D printing of an HKUST-1
microwall. (b) FE-SEM images of a 3D-printed HKUST-1 microwall (scale bar: 2 µm) and a serpentine wall (scale bar: 20 µm). (c) Plot of
the capacitance change (∆C) of printed HKUST-1 microwalls vs. RH. Reprinted with permission from [21]. Copyright 2022 American
Chemical Society. (d) Optical micrograph images showing meniscus-guided layer-by-layer 3D printing of diphenylalanine (scale bar:
20 µm). (e) Bright-field transmission electron microscopy image of an as-printed and annealed FF line pattern (scale bar: 1 µm).
(f) FE-SEM images of 3D-printed FF microstructures of a triangular prism (scale bar: 5 µm) and a perpentine wall (scale bar: 5 µm)
(g) Vertical PFM images of an annealed FF layer under AC voltages of 0 and 10 V, respectively (scale bar: 1 µm). Reprinted with
permission from [115]. Copyright 2021 American Chemical Society. (h) Schematic of 3D printing of crystalline FF at high RH and
amorphous FF at low RH. (i) Schematic of in situ cross-polarized imaging of the 3D printing process. (j) Two heterojunction microwires
consisting of amorphous and crystalline segments, and the corresponding cross-polarized images at θ = 45◦ and 90◦. (k) Five freestanding
encoded FF microwires demonstrating polarization-encoded anticounterfeiting properties. Reprinted with permission from [116]. Copyright
2022 American Chemical Society.

its amorphous form, and the printed structure exhibited the
anisotropy of refractive index (figure 7(i)). Figures 7(j) and (k)
show polarization-encoded 3D anticounterfeiting labels con-
taining a combination of amorphous and crystalline encoded
segments.

3.6. Metal halide perovskites

Over the past decades, metal halide perovskites have emerged
as outstanding optoelectronic and photonic materials owing to
their exceptional properties, such as their high strength, tun-
able photoluminescence (PL), large optical absorption, high
carrier mobility, and facile solution-processability [117–121].
The utilization of metal halide perovskites for diverse applic-
ations has thus been extensively investigated. Jeong et al
demonstrated the application of metal halide perovskites as
solar cells and achieved a record-breaking power conver-
sion efficiency (25.6%) [122], and Kim et al demonstrated
their application in LEDs that exhibited an external quantum

efficiency of 28.9% [123]. This illustrates the excellent opto-
electronic performance and potential of the metal halide
perovskites.

Additionally, owing to the urgent demand for optoelec-
tronics devices with high integration density, numerous
integrated functional devices with micro/nanostructures have
been developed, such as metal halide perovskite micro–
nano lasers [124, 125]and metal halide perovskite nanowire
array photodetectors [126]. However, these metal halide
perovskite devices are fabricated using conventional meth-
ods, such as electron beam lithography, photolithography,
and nanoimprinting [127, 128], which are costly and time
consuming.

Therefore, Chen et al developed a meniscus-guided 3D
printing method that employs metal halide perovskites [20].
The metal-halide-perovskite precursor ink underwent crystal-
lization at a confined femtoliter ink meniscus, and the sub-
micro scale 3D printing was enabled by the continuous with-
drawal of the micropipette from the substrate (figures 8(a) and
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Figure 8. Meniscus-on-demand 3D printing of metal halide perovskites for electrical and photonic devices. (a) Schematic of
meniscus-guided 3D printing of organic–inorganic metal halide perovskites. Inset: evaporative loss of solvent at the meniscus surface, and
computed concentration of perovskite solutes inside the meniscus (height = 250 nm; wetting diameter = 1160 nm), exhibiting a rim-shaped
concentration field. [20] John Wiley & Sons. (b) Optical microscopy images showing the results of meniscus-guided 3D printing. Reprinted
with permission from [129]. Copyright 2021 American Chemical Society. (c) FE-SEM image of a freestanding perovskite sub-micro wire
with a high aspect ratio (>30) (scale bar: 1 µm). (d) Tilted perovskite sub-micro wires fabricated at various pipette–substrate angles, θ
(scale bar: 5 µm), and a tilted serpentine structure (scale bar: 2 µm). [20] John Wiley & Sons. (e) FE-SEM image of an as-printed perovskite
RGB tri-pixel consisting of CH3NH3PbI3 (R: left), CH3NH3PbBr3 (G: middle), and CH3NH3Cl3 (B: right) sub-micro pillars; corresponding
side-view optical photoluminescence image of RGB tri-pixels. (f) PL image of a ‘smiley face’ sub-micro pixel matrix. (g) 3D-printed
sub-micro-pixel-based multilevel anticounterfeiting applications. Reprinted with permission from [129]. Copyright 2021 American
Chemical Society. (h) 3D-printed perovskite sub-microwire-based photodetector (scale bar: 50 µm), and its photocurrent–time trace. [20]
John Wiley & Sons.

(b)). The nucleation and growth mechanisms of metal halide
perovskite crystals were revealed by calculating the concen-
tration field of metal halide perovskite solutes inside the men-
iscus. The mechanisms theoretically demonstrate the origin of
the tubular structure. Additionally, a metal halide perovskite
sub-micro wire fabricated via meniscus-guided printing fea-
tured a well-oriented crystalline structure, which proved the

usefulness of meniscus-guided printing for fabricating these
crystalline structures.

Various metal halide perovskite micro/nanostructures can
be obtained via meniscus-guided printing (figures 8(c)–(f)),
including high-aspect-ratio sub-micro pillars, tilted sub-micro
wires, serpentine structures, and sub-micro pixels, which have
many photonic and electronics applications. Chen et al showed
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Table 1. Summary of printing materials, mechanisms, and precisions for meniscus-on-demand 3D printing.

Category Ink materials Printing mechanisms Printing resolution References

Metal
Nanoparticle (Ag, Au) Nanoparticle assembly ∼5 µm [29, 51–53]
Electrolyte solution Electrodeposition ∼200 nm [18, 23, 30, 43–50]
Liquid metal Solidification ∼150 µm [27–29]

Polymers

PPy Oxidative polymerization ∼50 nm [17, 26, 59, 60, 72, 75]
PEDOT:PSS Solidification ∼2 µm [60, 61, 69, 74, 75]
PANI Electropolymerization ∼500 nm [62]
PS Solidification ∼2 µm [63, 70, 71, 73, 76]

Carbon-based
Graphene oxide Solidification ∼800 nm [32, 89]
Carbon nanotube Solidification ∼8 µm [92, 93]

MOF HKUST-1 Crystallization ∼3 µm [21]
Peptides Dipeptides Molecular assembly ∼2 µm [115, 116]
Perovskites MAPbX3 Crystallization ∼600 nm [20, 129, 130]

that the brightness of a high-resolution display device could
be improved by increasing pixel height (figures 8(f) and (g))
[129], which enabled them to develop a multilevel, high-
resolution anticounterfeiting security label.Moreover, the sub-
micro wire height, which is inaccessible by conventional
wide-field microscopes, may be capable of encoding data.
In addition, the freestanding metal halide perovskite sub-
micro wire heterostructures with high control over shape and
composition are fabricated using the same printing protocol
[130]. In terms of electrical applications, a metal halide per-
ovskite sub-micro bridge between two Pt electrodes was fab-
ricated as a photodetector through meniscus-guided printing,
and the system exhibited switching behavior when the middle
of the sub-micro bridge was subjected to laser illumination
(figure 8(h)) [20].

The above-described studies have shown that meniscus-on-
demand printing allows the fabrication of freeform metal hal-
ide perovskite micro/nanostructures with high reproducibility.
Thus, this printing method could serve as a good platform for
developing advanced metal halide perovskite-based electronic
and photonic devices.

4. Challenges and prospects

In this review, we have shown that the meniscus-on-demand
3D printing method can be applied at the microscale and nano-
scale to form diverse and advanced electronic and photonic
devices from various materials, such as polymers, metal, and
metal halide perovskites. However, despite the great develop-
ments in the meniscus-on-demand printing field, some long-
standing problems remain to be solved. First, new inks applic-
able to meniscus-on-demand printing should be developed, to
allow for the fabrication of practical multifunctional devices.
Additionally, the fundamental mechanisms of different aspects
of the meniscus-guided printing process, including meniscus
formation during multi-nozzle parallel printing, the relation-
ships between ink rheology and printability, and the achiev-
able potential best resolution with a nanoscale meniscus, need
to be understood. Furthermore, meniscus-on-demand printing

should be integrated with other conventional printing tech-
niques, such as EHD printing, inkjet printing, and nanoim-
printing, to realize novel capabilities that are only obtainable
using such hybrid approaches. This area remains largely unex-
plored. Finally, standardized printing systems, such as robust
printer-nozzle systems, precise controlling units, and imaging
systems, should be developed to enable high-resolution, high-
output practical applications.

5. Conclusion

This review presented recent advances in meniscus-on-
demand 3D micro- and nanoprinting by examining the diverse
types of ink materials that have been used and the potential
applications of these printing methods in several fields, includ-
ing electronics and photonics. And a summary table for the
printing mechanism and resolution for different materials is
shown in table 1. The advantages of meniscus-on-demand 3D
printing were emphasized, including its high resolution, tol-
erance of various materials, and enabling controllable forma-
tion of individual structures. Moreover, the wide applicability
of meniscus-on-demand 3D-printed structures was described,
such as in the manufacturing of electronic circuits, sensing
devices, and photonic devices. The current challenges and pro-
spects of meniscus-on-demand 3D printing were also outlined,
to stimulate its further development. Clearly, meniscus-on-
demand 3D printing has the potential to be a leading platform
for the additive manufacturing of high-resolution functional
devices.
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